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The urban environment is a complex system. The evolution of cities is path­
dependent, involving massive interactions at a microscopic scale. New urban 
structures and forms emerge from ill-defined, non-linear, and interactive processes. 
The complexity justifies computer-based simulation because simulation is often 
the only practical way to study a complex system. However, it is the complexity 
that raises a series of methodological issues that need to be scrutinized. Urban 
(social) systems differ from natural systems in that the microscopic rule of the 
former is complex. Recently, bottom-up models such as cell-based spatially 
explicit models, cellular automata (CA), microsimulation and multiagent 
simulation (MAS) have emerged. This paper addresses some important issues 
of the new generation of urban simulation and advocates the use of simulation 
as a computational laboratory. 
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Urban simulation is a general label given to a highly diversified field (Maguire, 1989), 
which refers to a range of methods from quantitative urban modelling (Batty, 1976) and 
operational models (Wegener, 1994), qualitative system dynamics (Forrester, 1969), 
microsimulation (Orcutt et aI., 1961) and spatial diffusion (Hagerstrand, 1965), to 
mathematical spatial models based on a catastrophe and bifurcation theory (Wilson, 
1981; Allen, 1997). Simulation was at a low ebb in the late 1970s when disillusionment 
with large-scale models became apparent. The advance in computation technology has 
led to the development of geographical information systems (GIS), and then renais­
sance of geocompuation in the tail of quantitative geography (Macmillan, 1997). A 
new generation of urban simulation models emerged, highlighted by a special issue 
of Environment and Planning B on computer-based cellular simulations (Batty et aI., 
1997). Under the umbrella of cellular automata (CA), microsimulation or multiagent 
simulation (MAS), these models are quite diversified except that they are spatially­
explicit and disaggregate, and temporally dynamic. 

The new generation of urban models is spatially explicit in the sense that the basic 
units of simulation have an explicit relationship with each other, whereas in spatially 
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aggregated models regions can be denoted by an index or subscript that can suffi­
ciently represent the spatial relationship through mathematical formulae. Because the 
number of basic units in an aggregated model is limited, a matrix of distance between 
the origin and destination can be set up. After this transformation, spatial presenta­
tion becomes irrelevant. The new generation of urban simulation, however, has a 
massive number of basic units (which are called cells in CA or agents in MAS). As the 
state of a cell or an agent is dependent upon its environment, the spatial relationship 
has to be maintained during simulation. MAS develops an extremely explicit spatial 
relationship because an agent can move from place to place. Thus, agents interact 
with each other and then produce a constantly changing spatial relationship. The 
simulation of urban movement in a network through spatial syntax (Hillier, 1996), 
for example, requires a detailed knowledge of spatial configuration. 

The emergence of the new generation urban simulation model is related to the 
notion that the urban system is a complex system (Batty and Xie, 1994). Langton, 
for example, characterizes the phase transition of the system that consists of mas­
sive microscopic components as two separate regimes-the periodic and chaotic one. 
Between the two is a transition regime that displays complex behavior. As commonly 
noted, the complex system is poising on the 'edge of chaos' (Langton, 1992). The 
transition regime demonstrates a complicated structure. According to Langton, the 
phase transition is a 'second-order, or critical, transition'. "Crossing this critical 
transition region gives rise to 'complex dynamics'" (Langton, 1992:76). This fea­
ture is observed in so-called Boolean NK networks (Kauffman, 1991). The Boolean 
network consists of N elements linked by K inputs per elements. In biology, this 
model can be thought as an abstraction of N genes connected by K links. Kauffman 
noted that "phase changes between 'solid' and 'gaseous' states can occur in self-reg­
ulating NK networks, depending on their local characteristics" (Kauffman, 1991: 
68). While the previous state can be described by conventional and usually linear 
systems and the latter can be approached through statistical methods, the complex 
system has to be simulated in order to understand its behavior. Casti (1996) listed 
three 'fingerprints' of a complex system: (a) there are a medium number of agents, 
(b) these agents are intelligent and adaptive, and (c) their behavior follows local in­
formation. The first 'fingerprint' means that the number of the agents is too large 
for intuition and hand calculation. These agents make decisions and take actions 
according to local information. The constraint of local information field is in fact 
a property of severe 'non-linearity', which makes the use of deduction extremely 
difficult. Obviously, the urban environment shows these fingerprints of the complex 
system and therefore we cannot use deduction to study the urban environment. This 
further suggests that we should use a computer model approach. Following this ra­
tionale, Nagel and Barrett (1997) developed a whole transport system of the city of 
Albuquerque, New Mexico in the computer. 

The bottom-up models such as cell-based spatially explicit models, cellular au­
tomata (CA), microsimulation and multiagent simulation (MAS) are based on local 
rules to generate forms and patterns at the macro levels. These models are dynamic 
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in the sense that the system-time proceeds irreversibly. The state of each component 
changes along with the system-time in a discrete step. The system evolves with itera­
tions and exhibits the path or trajectory of growth. In this property it differs from 
the Garin-Lowry model wherein the iteration is used as an 'algorithm' to calculate 
the static state of convergence (Lowry, 1964). In a sense, time does not really matters 
in the latter but it is absolutely essential to the former. 

The advance in computation capacity has led to the blurring of distinction 
between science and social science. The use of simulation is not limited to 
geography and planning. The word 'artificial societies' has been coined to reflect 
the existence of societies in the media of computer. These artificial societies are 
astonishingly similar to human societies (Gilbert and Doran, 1994; Gilbert and 
Conte, 1995). By studying the artificial societies, insights can be gained to the 
change of our own society. Simulating social phenomena thus became a new 
bottom-up paradigm for social science (Conte et aI., 1997; Epstein and Axtell, 
1996). The key feature of this paradigm is 'computational'. Computation has 
been applied to explore theories of human behavior such as competition and 
collaboration (Axelrod, 1997) and the principle of economics (Tesfatsion, 1997) 
and to find solutions for practical problems such as traffic congestion (Casti, 1996; 
Resnick, 1994). A surge of computer-based models, particularly driven by GIS, 
not only calls for 'a more computationally minded scientific' approach (Openshaw, 
1998), but also requires a careful examination of the strength and weakness of 
simulation as an essentially heuristic method. 

The emergence of bottom-up models raised the need for rethinking simulation 
as a general method (Whickeer and Sigelman, 1991). This paper is not intended 
to provide a comprehensive review of the literature of urban simulation. The 
principles for urban model development and implementation have been addressed 
by Couclelis (1997). Batty (1997a) discussed the application of CA in urban planning. 
Rather, this paper will focus on the complexity inherent in urban simulation. 

SIMULATION-AN EPISTEMOLOGICAL STANDPOINT 

Simulation as a Tool for Studying Complex Systems 

The notion of complexity imposes a serious challenge to our epistemological 
capacity to understand the built environment. Complexity justifies the adoption of 
a simulation approach. Traditionally, researchers had to simplify urban systems in 
order to use a deduction or statistical approach. In fact, because of the difficulty 
in applying a deduction approach to complex systems, simulation is often the only 
practical way to study the dynamics of complex systems. 

The complexity of the built environment is not confined to the self-organization, 
irreversible and chaotic features of urban systems (Allen, 1997). The urban system 
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is a complex system because it consists of a large number of actors that interact 
with each other at a microscopic level. Because the components involve nonlinear 
interaction, such a system often denies deductive reasoning, i.e., developing new 
propositions through manipulating an axiomatic system. 

For a complex system, there are two traditional ways to approximate its property. 
Both reduce the system of complexity to a system of simplicity. First, to simplify 
it to such an extent that deduction is manageable by human brains and second, to 
use a statistical method to filter out the noise and extract 'regular' part of behavior. 
To take industrial location as an example, the Weberian industrial location theory 
belongs to the former; and the discrete choice theory is a typical example of 
the latter. The industrial location theory developed by Weber (1929) simplified 
the problem of location choice as the trade-off between access to the locations 
of materials, labors, and markets. The discrete choice theory decomposes the 
utility of choosing a place into a deterministic part and random part (Ben-Akiva 
and Lerman, 1985). The purpose of the discrete choice model is to extract the 
deterministic part of behavior. 

However, there are problems of using these approaches. First, it is difficult to 
encapsulate a complex system without losing crucial details. While it is widely 
accepted that a model is simplification of reality, reducing the complexity might 
lead to a model with behaviors qualitatively different from the reality. Macmillan 
pointed out that " ... the reason why they cannot be anything but simple is, of 
course, the computing technology; the technology allows the problem to be solved 
but constrains its conceptualization" (Macmillan, 1997:9). Second, related to the 
first problem is that the urban system is of organized complexity (Dibble, 1996). 
The property of an aggregated population is not a simple collection of all behaviors of 
its components. As shown in the study of complexity urban models, the stochastic 
disturbance often paves the way for system evolution (Allen and Sanglier, 1981; 
Allen, 1997). As a result, the reductionism approach may be problematic. 

Computer-based simulation allows a more flexible representation of the real 
world. For a complex system like a boat or an aircraft, it has been difficult to 
imagine the design without actually building a model (Hill, 1996). Despite a 
simplification of the real world, a computer model can maintain useful details to 
such an extent that it reproduces the fundamental behavior of the real system. 
Simulation therefore can reveal the hidden dynamics, which is difficult to spot 
without running the model. Conte et al. (1997) argue that simulation can provide 
an alternative means to study social phenomena that are so complicated that 
observation cannot find a clear interrelationship. 

Schelling'S model of residential segregation is perhaps the best to illustrate that 
local interactions can produce global structure (Schelling, 1978). The model begins 
with a cellular space and two different races. Each household occupies a cell. Assume 
that each household has a certain degree of racial tolerance towards the neighbor­
hood. That is, a household is satisfied with a mixed neighborhood as long as the 
neighborhood is not occupied by too many households from a different race. As 



26 FulongWu 

each household does not insist on living with the same race, it would be expected 
that there should not be a phenomenon of residential segregation. However, if the 
model is actually run either on a chessboard or in the media of computer, a pat­
tern of segregation begins to emerge. This is intuitively unbelievable. However, it 
occurs because a slight change in one neighborhood may cause the proportion of 
opposite race to exceed the threshold of tolerance. Consequently, this drives away 
the resident, which in turn leads to the changes in the racial composition of the 
neighborhood. Thus, a chain of movements starts. Eventually the city is split into 
two homogenous residential areas. This means that the divided residential areas are 
the result of many individual location choices. No single cause is responsible yet 
every movement contributes to residential segregation. The result of the simulation is 
therefore counter-intuitive, which can shed light on the formation of social areas. 

Complexity research shows that the complex behavior of a system is not necessarily 
resulted from complicated rules. The wellknown 'Game of Life' is an example. The 
rules of the Game are quite simple and can be clearly defined (Gardner, 1970). A cell 
will remain alive if it is surrounded by either 2 or 3 alive cells in the neighborhood; 
it will change from the dead to alive if it is surrounded by exactly 3 alive cells in the 
neighborhood; and for all other situations it will become dead. When applying the 
rules to a large number of cells, a complicated pattern will emerge as if the cellular 
automata has a life (Gardner, 1970). 

Simulation as an Alternative Reality 

The epistemological stance of simulation varies from positivism to interpretative 
one (Seror, 1994). The positivist believes the reality is fully observable, measurable 
and objective, while the interpretative stance regards reality as a social construction, 
embedded in context. Classical urban models belong to the former. Because there is 
a fully observable law governing changes, simulation is simply used as an extrapola­
tion method to apply this law to the future. That is, simulation is calibrated from 
observations. The result of simulation is then compared with observations to assess 
its recursive goodness-of-fit. 

The positivist view of urban simulation is now under attack. Besides the wellknown 
'flip of a butterfly' effect, i.e., a tiny local change at a bifurcation point can lead to a 
whole different trajectory of system evolution and thus unpredictability of self-orga­
nizing systems (Allen, 1997), a postmodernist believes that there is no such a law of 
the human society that is external to social existence. There are alternative realities 
that are not yet materialized. As the rules of the game do not exist independently 
from the society and human interactions, it is irrelevant whether simulation can 
replicate a real phenomenon. Instead, simulation is thought as the only way forward 
to explore the possible form of a different reality. According to this interpretative 
stance, simulation therefore is an artificial process to 'grow' or create phenomena 
that are not yet known. 



Complexity and Urban Simulation 27 

This postmodernism view has echoed in bottom-up simulation modes. Langton 
(1989) suggested that simulating life systems as 'life-as-we-know-it' should be dif­
ferent from 'life-as-it-could-be'. Emmeche (1994) emphasized that the emergence 
of virtual reality blurs the real with the hypothetical and that simulation is seen as 
a postmodern science. Epstein and Axtell (1996) questioned what constituted an 
explanation of an observed social phenomenon and suggested that the question 'can 
you explain it' will be interpreted as 'can you grow it' in the future. According to their 
view, the explanation provided by simulation is to find initial micro-specifications that 
are sufficient to generate the macro-structure of interest. Therefore, they proposed 
a generative view for the social sciences and believe that the artificial simulation 
should be a principal scientific instrument. 

URBAN COMPLEXITY AND THE RULES OF THE GAME 

Complexity can be created by simple behavior (i.e., the behavior that can be 
defined by a set of simple state transition rules) or by complex behavior (Table 1). 
CA seems to be tackling the first type of complexity quite successfully. By assuming 
that the state of a cell changes according to universal and local laws, CA applies 
the laws to every cell. Through the iteration of rules, we can observe how local 
changes create global structures. For example, the spread of forest fire and disease, 
the formation of local drain direction on a terrain (Burrough, 1998), the movement 
of pedestrians and traffic flows in a transport system are relatively well defined. 
The change of the states is subject to the law of physics or, slightly complicated 
in the case of pedestrian movement, the plausible rule of behavior, for example, 
'comfort walking' (Helbing et aI., 1997). An active walker in the comfort-walking 
algorithm decides the movement and orientation by considering the feedback 
with the surrounding environment. In the case of vehicle movement, a traffic 
regulation is applied without exception to the whole transport network. The 
performance of a vehicle such as the time of accelerating and the braking distance 
can be observed through experiments. 

In dealing with the first type of complexity, i.e., complexity developed from simple 
rules but repeatedly applied to a large amount of simulation units (cells), bottom-up 
models are obviously appealing. In fact, in many circumstances, the behavior can 
only be defined properly at the most disaggregated, i.e., individual level. The rule 

Table 1: The complexity of physical (natural) and urban (social) systems. 

Microscopic behavior 

Macroscopic property 

Physical or natural systems 
(consisting of non-linear 
interactions) 

Simple 

Complex 

Urban or social systems 
(consisting of more 
complicated interaction) 

Complex 

Complex 
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of simulation is axiomatic, which is near to a common sense or at least can be veri­
fied by observation. But because a large amount of simulation units are involved, 
it is impossible to deduce the aggregated effect. The task is ideal for the computer 
because the algorithm basically consists of iteration loops. 

Unfortunately, urban systems have the second kind of complexity, because the 
rule-space, i.e., the set of all possible rules, is extremely complex. The process of 
urban development is ill-defined and thus it comes to the rationale of a spatial 
decision support system (Longley and Batty, 1996). The rules themselves are 
evolutionary and can be redefined according to the interaction between the 
components (or agents). In other words, the rules are not independent from agents 
and thus cannot be predefined. The interaction at a local level cannot be specified 
into a set of simple rules. There are two reasons. First, when impossible to describe 
the behavior at the individual level, the rules are generalized from the description 
of a collection of individuals. For example, the economic system in a classical 
Lowry model consists of residential and industrial sectors. The interaction is defined 
between the two sectors rather than individual households and firms. The same is 
Allen and Sanglier's (1981) self-organization model of the urban system. Second, 
the individual behavior itself is complicated. The rules may be evolutionary, as 
agents can learn from the history. For example, cognition and adaptation can 
occur in a life-like system as shown in generic algorithm (Holland, 1998) and 
the game theory (Axelrod, 1997). 

A simulation model in essence is an analogy to the real system. To what extent 
the model simplifies the behavior of the real system is a critical issue. Certainly, here 
exists a dilemma between recognizing the complexity of rules and understanding 
behavior of the system. If the complexity of rules is reduced to such an extent 
that the model cannot capture the property of the real system, simulation actually 
produces the property of the simplified rules (in most cases manifested in a set 
of mathematical equations) rather than the property of reality. However, if the 
complexity of rules is maintained, the rule space is so complicated that it is 
impossible to understand the property of the model, as the values of parameters can 
be combined in an astronomically large number of ways. 

To deal with the complexity of the rule space, we can adopt two different simula­
tion approaches. The first approach is developing an analogy model. In this analogy 
model, the complexity is substituted by simple but plausible rules. The property of 
the simplified rules is then fully investigated, which may indirectly shed light on the 
dynamics of complex urban systems. This approach is useful because of its power of 
conceptualization. Just like conceptualization through natural languages, the concept 
constructed is not claimed to be identical to the reality. Moreover, just as there are 
many ways to describe the reality in a narrative way, the rules of a generic model 
can be generalized in different ways. The model is therefore evaluated according 
to its plausibility rather than accuracy. The purpose of simulation is to explore or 
build theories, that is, to provide an explanation for the system. The appropriate­
ness of the explanation can only be contextualized in the view that it explains the 
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salient feature of the system. This means that its explanatory power cannot even 
be judged in an ultimate sense and by the accuracy of data fit. For example, we 
may be interested in understanding whether or not the urban spatial structure can 
evolve into a polycentric one and under what conditions (Wu, 1998). Such a model 
can only approve/disapprove the possibility of polycentric development but can­
not predict the change in a real city, largely because the model is only a plausible 
analogy of reality. 

The second approach is developing a 'calibrated' model. The complexity is 
fully taken into account. Because the system is extremely complex, the purpose of 
simulation is not to develop a theory independent from the complexity of context. 
In this case, conceptualization is not thought to be useful. The approach is an a 
posteriori simulation because the behavior of the real system can be measured 
(the distinction between a posteriori and a priori simulations will be discussed in 
detail in the next section). The property found from the model is specific to that 
complex system and is not claimed to be the property of other complex systems. 
For example, expansion of urban land is dependent on the configuration of land 
uses of a city, which is specific to the city to be modelled. The same land use policy 
applied to a different context may produce a totally different result. To maintain 
complexity of the rule space, a complicated set of rules are adopted to follow land use 
conversions specific to the city under concern. Since the simulation model is specific 
to the context, it is unnecessary to examine the full range of parameter values 
as parameters can only take specific values. In fact, the values of the parameters 
should be measured or observed. Thus, it is necessary to adopt a procedure of 
calibration to justify the model. 

The complexity of rule space can be better tackled by heuristic simulation, as 
simulation is a flexible method. Resorting to computation, simulation can maintain 
an appropriate level of rule generalization. Simulation can be more accurate than 
narrative as the former can develop a testable hypothesis. On the other hand, 
simulation can include more complicated rules than a mathematical model. The 
latter is often not manageable (deducible) in a complicated situation. Cautions 
must be taken, however, not to add 'artificial' complexity to simulation. The 
artificial complexity is referred here to the complexity due to model specification 
rather than the complexity existing in the real world. To translate a model into a 
computer program, it is often necessary to specify parameters and make detailed 
assumptions. The parameter values and assumptions should be transparent in the 
sense that their effects on the model should be understood. 

SIMULATION AS AN A POSTERIORI AND AN A PRIORI PROCESS 

The discussion of the epistemology stance of simulation and complexity of urban 
systems suggests that simulation can be used for different purposes. Simulation can 
be used as a posteriori if the rule of the real system is well-understood and can be 
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clearly defined. What we do not know is the future state of the system according to 
the set of the rules. In many ways, the simulation of a natural system can fit into this 
category. For example, we clearly understand that the flow of water is subject to the 
law of gravity. What we do not know is how water flows over a complicated surface. 
The purpose of simulation is to 'extrapolate' the known state (t) to an unknown 
future state (t+ 1) from a set of well-defined behavior rules (Figure 1). The key issue 
of this type of simulation is to extract the rules of transition from observed data. 
Simulation tries to mimic the rules of the real system without substantial modifica­
tion. Parameter values are 'calibrated' and thus justified. 

As the real system is usually large, it will be too expensive to replicate it in order 
to simulate its change. The model therefore is a simplified version, which still pre­
serves a similar structure. However, the effect of simplification must be understood 
so that parameter values are adjusted properly. A critical step is to understand how 
rules work through the process of 'calibration'-i.e., we will use the observation 
from the reality to establish a relationship between input and output of the model. 
A 'static' calibration procedure includes observation of the system at its current 
state and the use of existing rules to simulate its future state. The success of simu­
lation is thus dependent on the extent to which the model correctly captures the 
fundamental mechanism of the real system. The ultimate test of the model is the 
degree of agreement between the result of simulation and observation. A 'dynamic' 
calibration procedure is to observe the history of the system in at least two time 
periods (t-1 and t). The model first simulates the change from state t-1 to t and 
compares the result with the observation. If the mode can successfully reproduce 
state t from t-1, then it can be regarded as a reliable one to predict an unknown 
state t+ 1. This is in fact a multi-temporal analysis, because the rules observed in 
the first phase (from t-1 to t) are used as the dynamics of the systems to predict the 
second phase (from t to t+ 1). 

The existence of urban complexity, however, suggests that it is difficult to 'extract' 
the rules that govern the urban system. A set of plausible rules are 'proposed' in the 
belief that they can capture some important feature of the system. Because the real 

Figure 1: An a posteriori simulation. 
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system is not well-understood, simulation as a priori is to develop an analogy model 
to speculate the system change, which might shed light on the issue under concern. 
The classic urban gravity model is an example. Although the model describes spatial 
interactions fairly well, it is in essence an analogy and the model cannot be justified 
by the existence of 'gravity' between cities. So-called 'calibration' is in fact specifica­
tion, which is based on plausibility. 

The significance of an a priori simulation does not lie in the empirical findings per 
se but rather in the fact that it helps to develop a better understanding of the system. 
Because the model is developed as an analogy, which is not based on the 'mechanism' 
of the system, model validation, i.e., justification of the analogy, becomes an important 
issue. Even when developed from empirical data, the model is useful only in a sense 
similar to regression. The latter describes how the dependent variable changes with 
independent variables. But it by no means suggests an underlying cause. 

Figure 2 shows that an a priori simulation in fact develops an analogy, a virtual 
reality, to the real world. The rules of the virtual reality are specified according to 
our proposed virtual micro-configuration. Then, the property of this virtual reality 
is examined thoroughly through computation so as to understand the properties of 
macro-patterns. The parameters of this model therefore do not need to conform to 
any observation, because the parameters of the real system may not take the same 
values. The simulation however can suggest an alternative reality-what if the pa­
rameter takes a proposed value. 

The complexity of the urban system, however, imposes a challenge for model 
validation. It is widely recognized that all simulation faces the difficulty of valida­
tion, especially when a complicated computational procedure and a wide range of 
parameters are involved. But to an a priori simulation as a method of theory building, 
validation is particularly important. It is critical to separate behavior under concern 
(such as the level of segregation in a residential location model) from other factors 
(such as the procedure of implementation and parameter values). An ultimate test 

Figure 2: An a priori simulation. 
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is whether the model behavior can be controlled towards a desired direction. If the 
answer is positive, then we may have sufficient knowledge of the system and thus 
can prescribe a better solution for the development of a system. 

The co-existence of micro and macro complexity means that it is extremely dif­
ficult to validate the model to such an extent that its rule space can be thoroughly 
examined. To validate a certain relationship requires running the model repeatedly 
with different parameters and their combinations in order to isolate the effect of a 
particular parameter. As social systems present a high level of interdependence, a 
theory developed through simulation is dependent upon the context. Validation is 
therefore related to the purpose of model building. As Macmillan (1997) pointed 
out, it is true but unhelpful to say that models involve simplifications of reality. 
Any description involves simplification. But we evaluate descriptions according to 
whether they serve their purposes. Similarly, the model complexity is a reflection of 
the purpose of their authors and users. The advantage of building a computer-based 
simulation model is that the simplification of the model can be made in terms of 
the purpose rather than computing constraints. The validation of the model thus 
should take the purpose into account. This understanding helps to constrain the 
task of model validation to a reasonable and manageable one. 

In sum, an a posteriori simulation is used to test a model that can be specified 
against the real mechanism and calibrated on the basis of real data. While the 
behavior of the system may not be well-understood (like an economic system), 
its rule is relatively well-understood, or at least is regarded so (such as the profit 
motivation, utility maximization, and market clearing). Sometimes even when the 
real mechanism is more complicated (involving real man, for example), we can 
tolerate some simplified basic assumption to some certain extent (for example, an 
economic man). An a priori simulation aims at exploration and development of 
theory, or explanation. Clearly the line between the two is fuzzy. 

URBAN SIMULATION AND THE ARTIFICIAL CITY (A-CITY) 

The interpretative view of simulation is that simulation is essentially an analogy. 
This understanding opens a new opportunity to build artificial worlds. The construc­
tion of artifacts in the media of computer is of no surprise because the computer 
is recognized as a universal computation machine (von Neumann, 1966). The idea 
of automata and artificial life can be implemented in the computer. The study of 
artificial life (A-Life), defined by Langton (1989; 1992), is a field of studying de­
voted to understanding life by attempting to abstract the fundamental dynamics in 
computer media and making them accessible to experiment manipulation and test. 
The A-Life research has led to similar artifacts developed in social simulation, such 
as artificial societies (Gilbert and Doran, 1994; Gilbert and Conte, 1995; Conte 
et ai., 1997) and agent-based economic systems (Arthur, 1991; Tesfatsion, 1997). 
Similar ideas have been proposed in the study of urban systems but with a more 
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visualization-oriented purpose, for example the computable city (Batty, 1997b; 
Batty and Jiang, 1999). 

The artificial city (A-City) is a virtual object that exhibits the characteristic of 
real cities. The strength of A-City lies in its realism of dynamics, i.e., the behavior 
of transition, instead of representation and visualization. The A-City research is 
significant because of the need for integration of theoretical urban dynamics with 
operational models. The simulation of A-City can reveal latent and causal effects 
that are difficult to examine through deduction in urban dynamics 

In urban CA studies, the rules of transition have been specified in a variety of 
ways (e.g., White and Engelen, 1993; Batty and Xie, 1994; Portugali and Benenson, 
1995; Wu and Webster, 1998a). In a sense, the cellular automatic city is an artificial 
city in which the complex urban dynamics is characterized by transitional rules. The 
study of A-City is to reveal a general knowledge of how our environment works or 
to provide the experience of managing our cities (Portugali and Benenson, 1995; 
Macmillan, 1996). Managing the city is a complex task. This can be learnt from 
a game-like process in SimCity (a popular computer game, Macmillian, 1996». 
Macmillian (1996) suggested that urban modelling should produce rigorous simu­
lation games, which he called 'serious toys', to provide the learning process about 
the way the city works. 

The usefulness of an analogy model is demonstrated in the self-organized 
criticality (SOC) model, or canonically known as a sand pile model, developed by 
Per Bak and his colleagues (Bak et aI., 1988; Bak, 1996). The model explains the 
tendency of large systems with many components to 'evolve into a poised, 'critical' 
state, way out of balance, where minor disturbances may lead to events, called 
avalanches, of all sizes' (Bak, 1996: 1). To examine the property of avalanches, a 
sand pile can be developed. If sand grains are poured slowly onto a flat surface, a 
sand pile is being built up. Now and then, when the slope of a sand pile becomes 
too steep, the sand grains slide down, causing a small avalanche. As the sand pile 
becomes bigger, the average size of the avalanches increases. The pile stops growing 
when the amount of sand falls off the edge equals the amount of sand added. At 
this point, the sand pile reaches a critical state. The slope of the sand pile remains 
constant through avalanches. At the critical state, a grain of sand added to the 
pile can start an avalanche of any size. The size of the avalanches conforms to 
the power law, that is, the frequency of avalanche can be described by a power 
relationship with its size. 

The sand pile model, though simple, analogously suggests the fundamental nature 
of some phenomena like earthquakes. Explanation typically relates earthquakes 
to specific faults or fault segments. But it does not provide any insight into their 
properties of size distribution (Bak, 1996). Just as in the sand pile model, a slide of 
sand grains can be explained by the history of the toppling of sand grain A leading 
to the toppling of a sand grain B and then C, and so on and so forth, one can report 
what happened after an earthquake in some detail. But in fact a large avalanche is 
triggered exactly by the same reason as a small avalanche. The sand pile experience 



34 Fulong Wu 

suggests that even if 'we can explain with utmost precision what has happened does 
not mean that we are able to predict what will happen' (Bak, 1996:87). 

In urban transport research, model construction is a common practice. But the 
first attempt to build an electronic version of the whole urban transport system was 
made in 1991 by so-called TRANSIM (TRansportation ANalysis and SIMulation 
System) (Casti, 1996; Nagel et a!., 1999). The model has been built by the Los Ala­
mos National Laboratory. The initial model was based on the city of Albuquerque, 
New Mexico and now is developed into a full working model of Dallas (Nagel and 
Barrett, 1997). Some basic features of TRANS 1M include disaggregation of demo­
graphic data, individual activity plans, micro-simulation and scenario testing (Nagel 
et aI., 1999). The use of the simulation approach to an artificial world can generate 
insights relevant to the real urban world. For example, in real estate development, 
fluctuation and the burst of property price have been widely observed. However, 
until recently we did not know the source of fluctuation. Simulation models can 
suggest how a small disturbance mayor may not create a chain of reaction which 
then sweeps across the whole urban space (Wu, 2002). 

The advance in virtual reality (VR) technology opens up new opportunities to 
develop the artificial city to its fullest visualization realism. In an application of 
simulating the movement of museum visitors of the Tate Gallery in London, Batty 
et al. (1998a) predict the impact of room configurations. The virtual Tate has been 
built on three different presentations: the space syntax model, CA, and agent-based 
networked virtual world. In the first virtual Tate, the configuration of space and 
how they are connected largely determine the movement in a complex building. 
The second model is developed according to the CA principles using StarLogo. The 
third model is a more elaborate multi-user virtual Tate based on the ActiveWorids 
software. Users from remote sites over the Internet can enter the Gallery and appear 
as avatars and walk in the virtual world. These worlds constitute a virtual laboratory 
for testing the factors that determine the movement of museum visitors. 

More interestingly, the artificial city can be built through multiple users in dif­
ferent places thanks to the VR and Internet technology. In a sense, the process of 
model construction itself is distributed. Doyle et al. (1998) discussed the five stages 
of development of virtual worlds, from a simple HTML web page to full avatar-based 
3D real-time interactivity. The largest virtual worlds developed by ActiveWorids is 
so-called :Alpha World'. Users can 'cut and paste' building objects into the Alpha World 
(Doyle et aI., 1998). Over 10 million building objects were placed on the digital 
plain in a period of 15 months (Damer, 1998). 

The Alpha World grows as real cities and exhibits morphological features. It has a 
clustered central area in a similar form to the Central Business District (CBD) (Batty 
et aI., 1998b). A raster image can be thought as a 'satellite' image of this artificial 
world to show the full history of land use changes in Alpha World. At the web site 
of Alpha World (http://www.activeworlds.comlsatellite.html). three images of land 
uses at December 1996, February 1998 and August 1999 have been produced, 
using a special program to scan through the database and assign a land use to a 
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pixel of the image. This provides a rich source for understanding the morphological 
development of the virtual world. The study of AlphaWorid per se would unlikely 
yield insight into questions about the real cities (Batty et aI., 1998b). However, if a 
decision-making process is known in a controlled experiment environment, again 
in the form of the digital city, the analysis of the morphology can generate useful 
understandings (Batty et aI., 1998b). 

The purpose of building A-City varies from a participatory planning and de­
sign experience, visualization with the fullest realism, to a simple yet theoretical 
representation of urban dynamics. A remarkable strength of the A-City lies in its 
controlled environment in which it is possible to find the determinants of a specific 
morphology. For example, to understand the impact of property rights on urban 
land use mix and urban performance, we can build two theoretical A-City models, 
respectively representing a 'free-market' and 'regulated' regime (Wu and Webster, 
1998b, Webster and Wu, 1999a, b). In the free-market regime, property rights are 
controlled by developers, whereas in the 'regulated' regime property rights are in 
the hands of communities. The development process is proposed in such a way to 
capture the competition between developers' profit-seeking behavior and commu­
nities' welfare-seeking behavior. The two cities generated different land use mix 
scenarios and produced different urban performance. The approach can be extended 
to test some hypotheses derived from economic theories in an explicit spatial form 
(Webster and Wu, 2001). 

CONCLUSION: SIMULATION TOWARDS 
A COMPUTATIONAL LABORATORY 

The new generation of bottom-up simulation models, ranging from CA, micro­
simulation to MAS, offers a chance to explore the dynamics of the built environment 
in its fullest sense of complexity. With the advance in computation power, model 
construction is redirected from solvability to computability. The complexity means 
that it is easier to characterize the urban development process at a microscopic than 
at an aggregated level. Spatial details can be incorporated into the model. 

CA, microsimulation and MAS are different in the ways to characterize urban 
dynamics. CA emphasizes the switch of a cell state under the influence of the cell's 
neighborhood. More complex CA can have an ability to modify the way a cell reacts 
to the changes of its environment. Naturally the change of CA state is akin to that 
of land use and urban structures. Microsimulation emphasizes the disaggregation 
of behaviors according to individual choice and decision-making. Individuals in 
microsimulation have life styles and sophisticated preferences such as travel demand 
(Wegener and Spiekermann, 1996; Wegener et aI., 1999). The advanced application 
of microsimulation in urban models is travel modelling (Wegener et aI., 1999). MAS 
is a formalism of distributed systems in which entities or objects interact with each 
other. The entities can be movable objects like 'agents' or spatially fixed objects like 
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a patch of the environment in which agents act. Agents can be divided into 'reactive' 
and 'cognitive' ones with respect to whether the agents simply react to the change 
of the environment or can behave according to their own plans (Batty and Jiang, 
1999). In a sense, MAS is a generalization of bottom-up model as CA can be seen 
as a reduced version in which agents are immobile and microsimulation is more 
application-oriented. In short, the simulation approach, especially implemented in 
a GIS environment, can provide a new tool for understanding spatial and temporal 
processes (Wu, 1999, 2000). These models could be either related to some real 
world phenomena such as the expansion of urban areas and creation of multiple 
subcenters (Wu, 1998) and the burst of real estate markets (Wu, 2002) or more 
theoretical query of mixed land use (Wu and Webster, 2000) and urban efficiency 
(Webster and Wu, 2001). 

In terms of implementation, both models are evolving towards the object-oriented 
technique, through which agents (as well as the environment) are represented as ob­
jects. The generic object-oriented toolkit SWARM developed at the Santa Fe Institute 
(http://www.santafe.edu/projects/swarm/) helps to implement both CA and MAS. A 
variety of tools are available to develop bottom-up urban models. Schelhorn et al. 
(1999) developed a MAS model called 'STREETS' using SWARM, while Batty and 
Jiang (1999) used StarLogo to simulate pedestrian movement over a road network. 
The request for integrating simulation models with GIS has been known for some 
time (Wagner, 1997; Batty and Jiang, 1999) and discussed in a geoprocessing for­
malism (Takeyama and Couclelis, 1997). But a fully integrated platform that can 
resort to GIS functions as well as object-oriented agent characterization is yet to 
be developed. 

The real obstacle to future bottom-up modelling does not lie in the technique of 
model implementation. Understanding the complexity of the real world and thus 
dealing with it appropriately are important. Among many remaining issues is how 
to incorporate plausible behavior into urban simulation with respect to the fact 
that the rule space itself is enough complex. Surely a model is built according to its 
purpose and so is its performance assessed. The recognition of complexity raises an 
acute need to use simulation as a computational laboratory, in which complex urban 
form and function can be explored. Urban modelling is not alone in the develop­
ment of computational approaches towards understanding complexity. Simulation 
has come into the arena of social sciences (Arthur, 1991; Emmeche, 1994; Epstein 
and Axtell, 1996). 
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