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This paper examines the optimal spacing of a set of feeder roads emanating 
from a single penetration road which has previously been extended into the 
hinterland of a port The specification of the optimal structure is based on an 
analysis of the relationship between the cost of feeder road construction and 
the increases in land rent they provide, The feeder road structure is completely 
specified by the distances between successive feeders along the main 
penetration road. These spacings can be determined by solving a set of non­
linear simultaneous equations, Numerical analysis can then be used to 
evaluate the sensitivity of these optimal spacings (including the number of 
feeders to be built) to changes in the key parameters of on and off-road 
transport rates and the per mile construction cost of feeder roads, 
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We now know a fair amount about the optimal geometrical structure of transport 
networks, at least in some well-defined cases (see, for example, Beckmann, 1952; 
Hauer, 1972; Puu, 1978; Sen, 1971; Smith, 1976, 1979; Tanner, 1967, 1970; 
Werner, 1968; and Werner and Boukidis, n,d,), Taken as givens the distribution of 
trips over the network and the network topology, some characteristic of network 
structure is then determined by optimizing a specific objective function, Smith 
(1979), for example, assumes that a fixed origin-destination distribution of trips 
utilizes a given radially structured road network and then determines the location of 
the single ring road which maximizes traffic relief to the radials, In a significantly 
different approach, Ralston and Barber (1982) have shown how the optimal dynamic 
structure of a single road (in this case the length) can be determined by evaluating 
the benefits of road construction in terms of land rent impacts, It is proposed here to 
utilize this approach in the specification of the optimal structure of a feeder road 
system, 

Despite the importance of feeder roads in development economics, this problem 
has received only passing attention, particularly at the theoretical leveL Under what 
conditions will feeder roads emerge? What are the likely optimal structures of feeder 
road systems in specific idealized environments? What are the dynamics by which 
joint arterial-feeder road systems emerge over time? The purpose of this paper is to 
make a modest beginning to the provision of answers to such questions, It will begin 
with E' brief description of a simple idealized environment for the feeder road 
problem, a neo-Von Thunen situation previously utilized by Walters (1968) in his 
analysis of road user charges, It is then shown how the optimal locations of a single 
feeder road and a two-feeder system can be determined, These results are 
subsequently generalized to any mUltiple feeder system and it is shown that it is 
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possible to determine both the optimal number and location of feeder roads in a 
complete system. Numerical analysis is then used to examine the changes in optimal 
feeder structure to the key parameters used in the model. The paper closes with a 
summary of the principal results and speculation concerning dynamic aspects of the 
feeder road problem. 

AN IDEALIZED FEEDER ROAD ENVIRONMENT 
Consider a port P located on a straight coastline oriented north-south (see Figure 

1 ). In the hinterland surrounding this port a single crop is grown and transported to 
the market at P where it is sold at a given fixed price of Sk per ton. The land is 
homogeneous in all respects and, without loss of generality, will be assumed to have 
a unit yield. A single arterial PZ has previously been extended from the port to the 
limit of cultivation in a direction perpendicular to the coast. Per mile transport costs 
along this road are Sa per ton-mile, less than the off-road rate of Sb per ton-mile. 
Transport is limited to the east-west and north-south directions1. Under these 
conditions, production in the hinterland is limited to the triangle QRZ where Z is k/a 
miles from the port P and Q and Rare k/b miles from P. 

Q 

R 

Fig. 1: The Scenario for the Walters' Model 

Implicit in this situation is a system of land rents created by differential access to 
the port P. Rent at any point is given as the difference between the price of the 
commodity at the port and the total transport charge involved in bringing the 
commodity to the market at P. In the initial situation, rents will appear as a half­
pyramid with height k at P and diminishing linearly to zero at points Q, R, and Z. The 
total initial rent is equal to the volume of this half-pyramid or k3/3ab. Let us assume 
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that any feeder roads extended into the hinterland off the main arterial PZ have their 
total benefits capitalized in terms of increments to this initial land rent condition. An 
optimal feeder road system maximizes total net benefits, the difference between 
total incremental land rent and the costs of feeder road construction and 
maintenance. 

The selection of the optimal number and locations of feeder roads off the main 
arterial PZ involves several trade-ofts. First, the greater the number of feeder roads 
and the greater the total length of the feeders the greater the annual costs of 
construction and maintenance. However, fewer, shorter feeder roads invariably will 
result in smaller increases to the area under cultivation and less incremental land 
rent. However, this simple trade-off is complicated by the fact that the impacts ofthe 
individual feeder roads are interdependent and there is a considerable "wastage" of 
feeder road mileage. First, each feeder must pass through the cultivated area PRZ 
which is already serviced by the main arterial. Secondly, when the feeders are 
spaced too closely their individual hinterlands also overlap. These issues will be fully 
explored in the subsequent analysis which proceeds logically from the simplest 
single feeder road case, to a two feeder system, and ultimately to most general case 
of N feeder roads. 

A SINGLE FEEDER ROAD 

Suppose it has been decided to augment the existing arterial PZ with a single 
feeder road built perpendicular to the arterial at a distance of d miles from the port 
(see Figure 2)2. Further suppose that the feeder AC is built to the same standard as 
the arterial and is extended to the new limit of cultivation 3 . The length of AC is thus 
k/a-d miles. The closer it is built to the port the greater the length of the feeder4 . 

A 

Fig. 2: The Impact of a Feeder Road on the Cultivated Area 
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What will be the effect of this new feeder? First, the cultivated area will be 
extended to include the new triangular area AS'D'. Land rent in this area will 
increase. Secondly, the land rent in the area S'CD' also increases because of the 
improved accessibility to the port offered by the new feeder. The increases in land 
rent are most clearly illustrated in the three dimensional rent pyramids of Figure 3. 

z 

Fig. 3: The Impact of a Feeder Road on Land Rent 

The volume of the half-pyramla oased on triangle PRZ represents the initial land 
rent before any feeder roads have been constructed. The incremental rent due to the 
construction of the feeder road AC is given as the sum of the "half-pyramids" AB 'D' 
and B'CD' each of which has a maximum at the intersection of the feeder road and 
the initial limit of cultivation, point E. As the location of the feeder road AC is moved 
along PZ, the length of the feeder (and hence its cost) and the volume of the created 
benefits varies. The problem is to determine the distance from the port where set 
benefits are maximized. 

For purposes of simplification, however, it is assumed that the initial limit of 
cultivation OZ is perpendicular to the feeder road in the vicinity of point E. It is then 
possible to approximate the impacted area as the diamond-shaped ABCD rather than 
AB'D'. This turns out to be quite a reasonable assumption and is increasingly 
accurate as the ratio of b:a increases. The boundaries AB and AD are determined by 
the condition that the total transport cost to the port using the feeder just equals $k. 
The boundaries BC and CD are determined by the equation of the total transport cost 
to the port via the direct route involving only the main arterial and the route 
employing the feeder and the arterial. 

In order to determine the optimal location of the feeder road, it is necessary to 
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develop analytical expressIOns for the volume of the rent pyramids based on the 
diamond-shaped ABCD. First, let us impose a coordinate system with the port Pas 
the origin and the major arterial as the x-axis. In terms of the parameters k, a, and b 
and the variable d we can show that BD=2(k-ad)(1-a/b)( 1 fbI, EC=(k-ad)(l/b), 
AE=(k-ad)( l-a/b)( 1/ a) and the height of the pyramid at E is (k-ad)( l-a/b). Therefore, 
the total incremental land rent of a feeder road located d miles from the port can be 
expressed as 

R(cI) (1) 

Of course it is possible this entire benefit may not be realized ifthe feeder road is built 
too close to the port as in Figure 4. If d~d'=k(b-a)/(b2+ab-a2) some of this land rent 
will be "lost in the sea". This "lost rent", Q(d), is equal to the sum of the volumes of 
the quarter-pyramids based on BGH and BFG and therefore 

1 3 Q(d) = 6 a (b _ aj [(k-ad)(l-a/b) - db] (2) 

Net incremental rent is R(d)-Q(d). 

Fig. 4: The Possible Compliction if Feeder Road is Constructed Too 

Close to the Port 
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The simplest of all functional forms is used for road construction and maintenance 
costs. The annual cost of feeder road construction and maintenance is assumed to be 
a constant $c per mile. The total cost of a feeder road d miles from port P is 

C(d) ; C (k/a - d) (3) 

which is a linear, strictly decreasing function of distance from the port. 

The single feeder road problem can now be formally expressed as 

MAX R(d) - Q(d) - C(d) 

dE [O,k/a] 

subject to 

R(d) - Q(d) - C(d) ~ 0 

(4) 

(5 ) 

Constraint (5) requires that the feeder yield positive net benefits. The situation is 
portrayed graphically in Figure 5. R(d) is a third degree polynomial over its entire 
range but strictly decreasing over [O,k/a]; it is illustrated as ABl. O(d) is given Dd'. 
OD is equal to one-half of OA since a feeder built on the coast will lose one-half of its 
total benefits (those on the left-hand side) to the sea. As the feeder road is built 
further and further inland, Old) declines at a continuously increasing rate. At a 
distance d' = k(b-a)/(b2+ab-a2 ) the entire hinterland of the feeder road is inland. 
R(d)-O(d) is given by DBl. At B, R(d)-O(d) meets R(d) smoothly and is identical with 
R(d) over the range [d', k/a]. 

A 

D 

F 

Gs 
I I I 
I I I I 
I I I I 
I I I I 

I 
I I I I 
I I I I 
I I I I 
I I I I 

I I I 
I I 

o d~d'" d' 
d'" ema. 

l 

Distance from feeder to port 

Fig. 5: Determining Optimal Location of a Single Feeder Rood 
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Let us suppose c "" O. In this case, C(d) would be given by OZ. The optimal value of d 
is d*o. Note that even when c = 0 the feeder is located so that some of its potential 
hinterland is "lost to the sea". Though rents decline with distance from P, the size of 
the actual hinterland of the feeder increases until d = d'. As c increases the slope of 
C(d) increases and can be illustrated, for example, as FZ. Here the optimal d is 
coincident with the maximum vertical difference between R(d)-Q(d) (DBZ) and C(d) or 
FZ. In this case the optimal value is labeled d*. As c increases, the slope of FZ 
increases and at some point is just tangent to DBZ, at G. This is the maximum value of 
c at which a feeder road can pay for itself through rent increments, leading to a 
feeder road d* cmax miles from the port at P. At.values of c in exce.ss of cmax, C(d) li~s 
above R(d)-Q(d) and no feeder road can be bUilt. Revenue from Incremental rent IS 

simply insufficient to offset the costs of feeder road construction and maintenance. 

A clear rule describing the situations in which feeder roads can emerge can be 
easily developed from the formal conditions for an optimum to (4) and (5). Moreover, 
the equation of the marginal costs of road construction with the marginal 
incremental rent yields the optimal locations for feeder roads. Feeder roads can be 
built whenever c < cmax. Unfortunately, it is not easy to develop a simple analytical 
expression for d* even though R'(d) - Q'(d) - C'(d) is a quadratic function. 

A TWO FEEDER SYSTEM 
Consider nowthetwofeeder system of Figure 6. Two feeders AC and FH have been 

extended into the hinterland of the main arterial to their respective limits of 
cultivation. AC is d, miles from the port, FH is d2 miles from the port and CH is thus 

A 

z 

Fig. 6: The Impact of a Two-Feeder Road System on the Cultivated Area 
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d2-d l miles in length. Approximating the hinterlands of the feeder roads by diamond~ 
shaped areas ABCD and FGHI again simplifies the problem. The net incremental rent 
of the two feeder system can be divided into four components: .... 
(1) R(dl,d2)-~ the total Incremental rent of the two hinterlands ABCD and 

FGHI; 

the rent foregone if feeder AC is built too close to the port 
and its hinterland overlaps with the sea; 

the rent foregone if the two feeders are built too close 
together and have overlapping hinterlands;and 

the costs of feeder road construction and maintenance. 

Let us consider each in turn. 

R(djJd2): This is the sum of the incremental rent based on the two areas ABCD and 
FGHI. For ABCD, this is identical to equation (1) above and for FGHI we have 

(6) 

so that 

(7) 

As will be shown below this component easily generalizes for the N feeder road 
system. 

Q(dd: This is identical to (2). There are no terms for Q(d 2 ) since any rent foregone if 
feeder 2 is built to close to the port will be subsumed under the overlap of the two 
feeders' hinterlands given below as S(djJd 2). 

S(d l,d2): As is illustrated in Figure 6, the two feeders may have overlapping 
hinterlands. In fact, any optimal system for feeder roads must have overlapping 
hinterlands since their locations will always be drawn to the port where rent is at a 
maximum. First, we must determine the breakpoint between successive feeders. 
Farmers will ship their produce to the port utilizing the cheapest route. Excluding 
those farmers who will only use the main arterial and no feeders, we can define the 
breakpoint between successive feeders by the equation of total costs to P using 
either feeder road. It can be shown that the breakpoint between successive feeders, 
KT in Figure 6, is always a constant 'proportion of the inter-feeder spacing. This 
breakpoint occurs at (a+b)/ 2b of the distance between any two feeders. Thus, all of 
the incremental rent based on the areas KND and KGO must be subtracted from 
R(d l,d2 )· 

The calculation of this overlapping rent involves the summation of the rent from 
four separate quarter-pyramids based on the triangles KMG, OMG, LND, KLD. It can 
be shown that 
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1 [ a+b 2 a+b + 6b ((k-ad 1((1-a/b)--2-(d2-d 1» ((k-ad1)(1/b)-ZT!):.aT(d2-tl l ») 

+ ((k-ad2)(1-a/b}_b2a (d2-dl»2((k-ad2)(1/b)-a/2(d2-dl»] (ill 

When (d2-d,) = 0, that is when the two feeders are located at the same distance from 
the port, it can be shown that S(d"d2) = R(d,) = R(d2) and there is a complete 
overlapping of hinterlands. 

C(d2,dJ Finally we must account for our expenditures on road construction and 
maintenance. Each feeder will cost c(k~ -di), so that two feeders will cost 

(9) 

Combining these components, the maximation of total net benefits can be expressed 
as 

d1 ,d2 

subject to 

F (d1 ,d2) ~ a (11 ) 

and 

d? 
{. 

~ d
1 

(12) 

Constraint (11) requires positive net benefits for feeder construction to take place 
and constraint (12) requires the second feeder road to be located no closer to the port 
than the first feeder road. 

The maximization of (10) yields two simultaneous equations in d, and de which can 
be solved using most available routines. Constraint (12) is met by starting the 
solution iterations with the constraint holding. Normally, the constraint will hold for 
any optimal solution located by an algorithm such as a Newton or modified Newton 
procedure. 

MULTIPLE FEEDER ROAD SYSTEMS 
This model can be easily generalized to simultaneously determine the optimal 

locations of N feeder roads spaced along the length of the main penetration road. 
Using the notation developed in previous sections, the specification of the optimal 
spacing of a set of N feeder roads (d*1,d*2, ... ,d\)can be expressed as 
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W\X F(d
1

,d
2

, ... ,d
N

) 

d. 
1 

(13 ) 

where 

(14) 

( 15 ) 

ilnd 

S(d, .,j. '1) " 
1 IT 

1 .) a+b ) 3 ( ) ) b-a ( 3 -' (Ik"ilci. (l-a/b)---,(d. -d.) +( k-ad. (l-a/b -- d. -d.)) 
6i\b' 1 2 '1+1 1 1+1 2 1+1 1 

a+b 2 a+b 61; ((k-arl i )(1-a/b)--2-(d i +1-d j )) ((k-adi)(l/b)-~(di+l-di)) 

+i)I) ((k-adi+1)(1-a/b)-'~~(cli+l-di))2((k-adi+1)(1/b)-a/2(di+l-d ;)) (16) 

The summation of S(di.di+l) extends over N-1 overlaps of the N feeder roads. In 

addition, there is the implicit constraint set 

; '" 1,2, ... ,N-l ( 17) 

which requires that successive feeders be located at increasing distances from the 
port. 

The solution to this problem yields N simultaneous equations 

i '" 1,2, ... ,N (18 ) 

which is solved by any available routine. The proper choice of starting points for di 

will generally result in a set of optimal spacings (d*1,d*2,,,.,d\) which satisfy (17), 

since the function is well behaved over the appropriate range oj, 

While the maximization of (13) yields the optimal spacings for a set of N feeder 
roads, it remains to determine the optimal number offeeder roads for any given setof 
parameters a, b, C, and k. This is achieved by solving (13)for progressively larger and 
larger systems of feeder roads and selecting the optimal overall system by 
inspection. Of course when c = 0, F(di/) is maximized when there is an infinite number 
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of feeder roads with zero spacing. However, for any positive value of c there will 
always be a finite number of feeder roads in the optimal system. As the number of 
feeders increases, the increase in construction and maintenance costs as well as the 
overlap of feeder road hinterlands leads to a point where net benefits actually 
decrease with increasing N. 

A NUMER~CAL EXAMPLE 
Consider the following numerical example with the parameters fixed at the 

following values: k'" 20, a = 1, and b'" 2. The numerical results are summarized in 
Table 1. In the limiting case in which there are no road construction and 

Table 1: Optimal Spacings and Net Benefits for Feeder Systems 

c==O 

Number of feeders d' I Net benefits 

1 (1.68) 223.33 

2 (1.22, 4.81) 322.84 

3 (0.965, 3.655, 6.78) 383.79 

c = 5 

Number of feeders d' I Net benefits 

1 (1.85) 132.50 

2 (1.48,5.53) 155.34 

3 (1.317,4.737,8.314) 148.03 

maintenance costs, c == 0, the addition of feeders leads to continuously increasing net 
benefit, but at a constantly decreasing rate. As more and more feeders are added the 
spacing becomes increasingly dense and, in the limit, leads to zero spacing. Now 
consider the case in which c = 5. First. as one would expect, increasing construction 
and maintenance costs lead to shorter feeder roads located further from the port for 
any given number of feeders. When c = 5 the optimal number of feeder roads is N = 2. 
Both one and three road systems lead to an erosion of net benefits. Increasing N 
beyond three will necessarily reduce net benefits even further, eventually leading to 
negative net benefits. 

SUMMARY AND CONCLUSION 
In this paper it has been shown that it is possible to analytically determine the 

optimal structure of a feeder road system in a highly idealized case. The formal 
conditions for optimality of this system yield the common sense result that any 
optimally spaced feeder road system will result in the equation of the marginal costs 
of road construction and maintenance with the marginal incramental rent from road 
extension. However,the analytics are complicated by the various components to 
incremental rent due to the overlap of feeder road hinterlands. Moreover, it has been 
shown that the optimal structure of feeder road systems behaves as expected with 
variations in key parameters such as per unit road construction and maintenance 
cost. Future research will be directed towards a more thorough numerical analysis of 
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the sensitivity of feeder road spacing to changes in the parameters a, b, c, and k. Of 
particular interest is the identification of conditions in which the optimal feeder road 
system makes a topological transition from N-1 to N feeder roads. 

N 
1. This assumption has been made purely for geometric simplicity. Cherene, Neidercorn, 

and Song (1983) have analyzed an investment problem of this type using the Euclidean 
metric. 

2. 

3. 

4. 

* 

R 

Only the area above the feeder road need be analyzed since the system is symmetric 
about PZ. 

The case in which the new feeder is of inferior technology (i.e., in the range (a,b)) can be 
accommodated with only minor changes. 

The case in which feeder roads are truncated before the limit of cultivation is more 
realistic but proves analytically to be much more difficult. 

I wish to acknowledge the assistance of Bruce Ralston and Brian McKee in the 
development of this paper. The graphics were prepared by Ole Heggen and Ken 
Josephson of the Department of Geography, University of Victoria. 
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