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In this paper we use Voronoi polygons (VP) to test weather more homogenous 
exposure areas can be generated to reduce “ecological bias”. In the analysis, soil 
contamination measurements by Lead (Pb) were superimposed upon a layer of 
small census areas (SCA) and the average exposure for each SCA was calculated. 
Next, VPs were formed around soil test points, with each polygon containing ex-
actly one Pb soil measurement. Spatial interpolations were also run, to compare 
their results with the results obtained by SCA averaging and VP rezoning. Next, 
OLS and Spatial Lag regressions were run to link Pb exposure with the health 
status of local children, with health information retrieved from the Clalit Health 
Services’ database. Model fits were consistently higher in the VP models compared 
to the SCA and interpolation models, indicating that the VP method appeared 
to improve the models’ explanatory power by reducing exposure misclassification.
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Environmental studies often use census-designated statistical areas or townships to 
estimate the average exposure levels of local residents to various sources of air pol-
lution and soil contamination (Dubnov et al., 2007; Portnov et al., 2009). In most 
cases, the ambient levels of environmental pollutants are recorded by air quality 
monitoring stations (Ritz et al., 2002; Dubnov et al., 2007) or measured by soil 
contamination tests (Walling et al., 1999). However, census-designated areas, in 
which study population resides, and networks of air quality monitoring stations 
(AQMS) or/and soil test sites most often mismatch geographically, with some small 
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census areas (SCA) hosting several environmental quality monitors, while others 
having none of them. This situation may lead to exposure misclassification bias, 
due to the fact that the same pollution exposure levels are effectively assigned to all 
residents of relatively large territorial units, within which actual exposure levels may 
vary considerably (Portnov et al., 2007; Kloog et al., 2009).

Several empirical studies attempted to address exposure misclassification bias by 
using various interpolation techniques, such as splines, inverse distance weighted 
method (IDW), kernel smoothing, and kriging (Wakefield ans Shaddick, 2006; 
Portnov et al., 2009). According to these interpolation-based approaches, discrete 
observations are transformed into continuous pollution surfaces, upon which resi-
dential locations of the study subjects are superimposed, thus enabling to obtain in-
dividual exposure estimates (Heuvelink, 1998). However, these interpolation tech-
niques have several drawbacks, such as the mismatch of results obtained by different 
interpolation tools and “error propagation” (Gotway and Young, 2002). The major 
cause of the latter bias is attributed to the fact that any error (e.g., due to faulty 
measurements), potentially occurring at original observation points, propagates into 
all of the output layers of data created by interpolation distorting them (ibid,1911).

Spatial tessellation, or a division of a geographic plain into non-overlapping poly-
gons, is another mapping technique, commonly used in geography. There are vari-
ous types of spatial tessellations, such as administrative divisions, school districts, 
electoral districts, census tracts, vegetation patterns, land uses, and land covers. 
Artificial tessellations (i.e., tessellations based on regular non-overlapping shapes, 
not associated with particular geographic features) are also used in geography. Such 
tessellations include Voronoi diagrams (Voronoi polygons or Delaunay tessella-
tions), lattices, and grids, and are used to approximate catchment areas of urban 
facilities or to aggregate a set of spatial features based on a common zonal system 
(Okabe et al., 1992).

In this paper, we hypothesize that because small census areas, used to assemble 
socio-economic attributes of subject populations, and actual exposure zones often 
mismatch geographically, this “misalliance” may lead to exposure misclassification. 
As we further hypothesize, using Voronoi polygons (VPs) to rezone the study area 
can help to generate more homogenous pollution exposure areas, thus minimizing 
exposure misclassification. Voronoi (or sometimes called Thiessen) polygons (VP) 
are regions, whose interior consists of all points in the plane which are closer to a 
particular point in space than to any other one (Thiessen, 1911; Voronoi and Reine, 
1908; Weisstein, 2009). 

As an illustration of the proposed approach, we use the results of soil tests for Lead 
(Pb) contamination, carried out in the Greater Haifa Metropolitan Area (GHMA) 
by the Israel Geological Survey in 1998-2007 (unpublished data). Lead poisoning as 
a health issue has been described as a “silent epidemic” (Nriagu, 1988). According 
to several epidemiological studies, young children are the most sensitive group to 
lead exposure (Bellinger et al., 1987; Mushak et al., 1989; Thornton et al., 1990).
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VORONOI POLYGONS (VPS) AND THEIR USE IN EMPIRICAL 
STUDIES

VPs are created around a set of “reference” points on the plane, so that all loca-
tions within a given region are closer to one of the “reference” points than to any 
other point in the distribution (Voronoi et al. 1908; Minami and ESRI, 2000). 
Thus, for a set of points (a1, a2,..., an) located on a Euclidian plane, locations x be-
long to the polygon formed around point ai, if their distances to point ai are equal 
or smaller than their distances to any other reference point aj: 

(x - ai) ≤ (x - aj),
where differences in the parentheses stand for Euclidian distances between pairs 

of points.            
If location x is equidistant from a pair of points, the location will lie on the 

boundary of two adjacent polygons. Similarly, if x is equidistant from three or more 
points, it will form a common vertex of three or more adjacent polygons. The re-
sulting set of polygons, defined in the above manner, forms a contiguous, non-
overlapping tessellation which is unique for any given set of input points (Hwang et 
al. 1999).	

In previous empirical studies, VPs were primarily used in computer graphics and 
computer simulations, in geophysics, and meteorology (Boots 1980; Braun and 
Sambridge, 1995; Bohm et al., 2000; Minami et al., 2000; Mostafavi et al., 2003; 
Ledoux and Gold, 2007; Weisstein, 2009).

Thus, Benenson and Omer (2003) used the Voronoi diagram (VD) approach 
for constructing continuous building coverage, in which VP were formed around 
individual buildings and included the buildings themselves and surrounding ar-
eas, forming a net, visually similar to residential parcellation. In a separate study 
(Benenson et al., 2002) used VP to create a continuous residential parcellation so 
as to simulate the dynamics of ethnic distribution in the Jaffa area of the city of Tel 
Aviv during the period 1955 -1995, using the “agent-based” modeling approach. 

Hwang and colleagues (Huang et al., 2003) conducted a health survey to assess 
the impact of different pathways of human exposure resulting from the off-site mi-
gration of polychlorinated biphenyl (PCB) contamination in the Mohawk Indian 
reservation in the U.S.A. Seven methods were examined to map surface soil PCB 
concentrations, including the VP method. The results indicated that all methods 
performed well in deriving a surface soil PCB concentration estimate, although the 
inverse nearest neighbor approach resulted in the smallest average estimated error. 

In another study (Ritz, 2002) investigated the degree of uncertainty associated 
with the use of spatial exposure models for air pollution assessment. They presented 
a modeling framework for assessing the exposure model performance and investigat-
ed the role of spatial autocorrelation for the estimation of health effects. The study 
used data from the Southern California Children’s Health Survey. The adjacency 
based weight matrices were created using VPs, in which each polygon contained 
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exactly one individual. The analysis suggested that the inclusion of residual spatial 
error terms improved the prediction of adverse health effects and that residual spa-
tial errors might be used as a diagnostic for comparing models’ performances. 

Okabe et al. (1992) published a comprehensive review of approaches to the com-
putation of Voronoi diagrams (VDs) and their empirical applications in different 
fields of science, including astronomy, metallurgy, ecology, economy and physical 
planning. One of the potential VD applications discussed in the book was a co-
investigation of spatial patterns of two layers of point-like objects (such as e.g., 
railway stations and bookstores), aimed at determining whether their spatial pat-
terns are mutually dependent or independent of each other. The proposed algorithm 
involved a two-stage analysis: first, VPs were formed around one group of objects 
(e.g., railway stations) and, next, nearest neighbor distances for the second group of 
features (e.g., book stores), falling into individual VPs, were formed around the first 
group of objects and co-analyzed.

Although several empirical studies carried out to date were based on the VP tech-
nique, in most of these studies, VPs were mainly used for mapping, visualization of 
spatial patterns, and for the formation of non-overlapping ‘trade areas’ or so called 
‘subsistence zones.’ There have also been several attempts to use the VP technique 
for the locational optimization of public facilities and for the comparison of bivari-
ate distributions of different geographically referenced objects (Okabe et al., 1992; 
Hwang et al., 1999; Bohm et al., 2000). However, to the best of our knowledge, 
no studies have been conducted yet using VPs for multivariate analysis. However, 
in empirical studies, there is often a need to use multivariate statistical tools, to in-
vestigate the association between several factors while taking into account potential 
confounders that may affect it. Hence, in the following analysis, we attempt to il-
lustrate the use of VPs for redefining population exposure estimates for a subsequent 
multivariate analysis, in which the association between air pollution exposure esti-
mates and asthma morbidity will be controlled by the socio-economic status of the 
study population and its health attributes. 

RESEARCH METHOD

Study Population

 The study population consisted of a systematic sample of 3,922 schoolchildren 
of the 1st through 8th grade (6-14 years old) residing in different residential commu-
nities of the Greater Haifa Metropolitan Area (GHMA). The sampling was carried 
out in 2008-2009 by the Clalit Health Services (CHS) and was representative of 
the entire cohort of children residing in the study area in terms of gender and age 
(P>0.5). Geographically, our study area is formed by seven cities, including the city 
of Haifa (266,000 residents), Qiryat Tivon (13,100 residents), Nesher (21,300 resi-
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dents), Qiryat Ata (49,600 residents), Qiryat Motzkin (39,600 residents), Qiryat 
Bialik (36,400 residents) and Qiryat Yam (37,000 residents). Demographic data 
(the date of birth, and gender) and data on the children’s health status (viz., the lat-
est measurement of weight and height; the presence of acute and chronic diseases 
including Asthma) were retrieved from the CHS computerized database. [CHS is 
the largest health care provider in Israel. Health care coverage in Israel is mandatory 
and all study participants had similar health insurance coverage and similar access 
to health services].

 The locations of the children’s homes were geo-coded and mapped using the 
ArcGIS 9.xTM software. Geocoding is the process of generating geographic coordi-
nates (latitude and longitude) from street addresses, which enables individual loca-
tions to be mapped as GIS layers {ESRI, 2007 #10}. The residential locations of 
children covered by the survey are shown as small black dots on Figure 1. 

Figure 1: Map of the study area showing the location of homes of children covered 
by the survey, lead sampling points, and SCA divisions
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Soil Contamination Data

Soil contamination data by Lead (Pb) were obtained from the Israel Geological 
Survey, carried out in 1998-2007 (unpublished data). There were 45 soil sample 
points spread fairly evenly across the entire area of GHMA (see Figure 2) with 
lead contamination ranging from 0 (i.e., below detection limits) to 960 mg/kg. 
Although the number of soil test sites used in the analysis (45) was relatively small, 
this number is generally considered to be sufficient for robust spatial interpolation 
(Anderson, 2001). In the analysis, the default kriging settings (such as sill/nugget 
ratios) of the ArcGIS 9.xTM software were used.

Study Phases

The study was carried out in several phases. During the first phase of the analysis, 
soil sample points were superimposed upon the layer of SCAs, into which the entire 
study area is divided (see Figure 1), and the average lead exposure for each SCA was 
calculated. The task was performed by averaging the lead exposure values of all lead 
measurements falling into a given SCA. Next, VPs were formed around soil test 
points with each polygon containing exactly one lead soil measurement point (see 
Figure 2). 

Figure 2: Voronoi polygon rezoning of the study area into exposure zones formed 
around soil measurement points
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At the next stage of the analysis, kriging and Inverse Distance Weighted (IDW) 
interpolations were run, to compare their results with the results obtained by SCA 
averaging and VP rezoning. Interpolations was performed according to the individ-
ual exposure estimation approach developed in our previous studies (Yogev-Baggio 
et al. 2010). 

Descriptive statistics of the research variables, for SCAs and Voronoi grids, are 
reported in Tables 1&2, respectively. 

Table 1: Descriptive statistics of the research variables for the SCA resolution level*

Variable Measurement 
unit

Minimum Maximum Mean Std. 
Deviation

Dependent variable

Asthmatic children % 0.000 28.070 14.572 6.483

Explanatory variables

Lead contamination ppm 10 493 109.430 144.693

Obesity diagnosis % 0.000 23.810 4.249 4.672

Low income status % 0.000 50.000 10.429 10.017

Average age years 8.833 11.333 10.082 0.435

* Total number of cases – 72.

Table 2: Descriptive statistics of the research variables for the Voronoi resolution 
level*

Variable Measurement 
unit

Minimum Maximum Mean Std. 
Deviation

Dependent variable

Asthmatic children % 0.00 37.500 13.056 7.667

Explanatory variables

Lead contamination ppm 16.166 173.400 70.318 41.656

Obesity diagnosis % 0.000 16.670 3.380 4.125

Low income status % 0.000 50.000 8.471 9.397

Average age years 8.444 11.538 10.165 0.592

*Total number of cases – 45.
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During the next phase of the analysis, individual values of lead tests were trans-
formed in continuous surfaces using kriging and IDW interpolation approaches. 
Next, the locations of homes of children covered by the survey were superimposed 
upon these surfaces and individual exposure of each child in the study cohort to lead 
contamination was estimated. The analysis was performed using the “spatial loin” 
tool in the ArcGIS 9.xTM software (Minami et al., 2000; ESRI, 2007). The obtained 
values of lead exposure were then averaged for each SCA based on individual expo-
sure estimates of all the children residing in each particular SCA. 

During the last phase of the analysis, the percent of children with asthma, and 
their socio-demographic attributes were calculated, first, for the SCAs (Fig. 1), and 
then for the VPs (Fig. 2). Both tasks were also performed using the “spatial join” tool 
of the ArcGIS 9.xTM software (ibid.). 

Statistical Analysis

To identify and measure the significance of factors affecting the development of 
the children’s asthma, Ordinary Least Squares (OLS) models were initially used. 
During the analysis, multi-collinearity and normality assumptions were tested and 
the results were found to be satisfactory (Tolerance>0.85). The percent of children 
with asthma, for either SCA or VPs, was used in the analysis as the dependent vari-
able. 

In addition to lead exposure, the following factors were included into the mul-
tivariate regression analysis as explanatory variables for asthma prevalence: age, 
medical diagnosis of obesity (overweight), and welfare support to the child’s family 
(presence of support for a poor family or lack thereof ). The confounding role of 
these variables has been outlined by several previous (Smith et al., 2002; Kosti et 
al., 2006; Wang and Lobstein, 2006). The values of the variables were calculated for 
either SCAs or Voronoi divisions as percent of children with a given attribute (e.g., 
welfare support or obesity), apart from lead exposure and age which were calculated 
as averages.

During the initial stage, the analysis was performed using the following linear 
model: 

Percent of children with asthma = B0 (constant) + B1* (lead exposure) + 
B2*(age) +B3*(obesity) + B4*(low income status) + B5 (random error term),
where B0,…, B4 are regression coefficients. 

At the second stage of the analysis, Spatial Lag (SL) regressions were run, to ac-
count for spatial dependency of regression residuals. The analysis was performed 
using the GeoDA 0.9© software (Minami et al., 2000).



54 I. Kloog and B. A. Portnov

RESULTS

Tables 3-5 report factors affecting the percent of children diagnosed with asth-
ma and calculated using SCA averaging (Table 3), IDW and kriging interpolations 
(Table 4), and VP rezoning (Table 5). For SCA averaging and VP rezoning, two 
types of regression models - OLS and SL regressions - are also reported. [Since SL 
models obtained for interpolation-based estimates are nearly identical to the results 
of OLS models, SL models are not reported in Table 4, for brevity’s sake].

Table 3: Factors affecting the percentage of children with asthma (geographic 
resolution - Small Census Areas (SCA); methods: Ordinary Least 
Squares (OLS) and Spatial Lag (SL) regressions) 

Variable
Model 1-OLSa Model 2-SLa

Ba Ba

(Constant) -10.085
(-0.565)

-11.057
(-0.642)

Lead exposure -0.008
(-1.402)

-0.007
(-1.338)

Obesity 0.067
(0.405)

0.064
 (0.405)

Income status 0.127
(1.578)

0.122 
(1.567)

Age 2.370
(1.347)

2.360
 (1.388)

Number of obs. b 72 72

R2 0.079 0.081

F 1.430

Log likelihood -233.21

Moran’s I c 1.110

Rhod 0.075
a Regression coefficient and t-statistics in the parentheses; 
b number of valid observations list-wise; c Moran’s I spatial 
lag coefficient. d spatial lag coefficient. *indicates a 0.1 
significance level; **indicates a 0.05 significance level; *** 
indicates a 0.01 significance level.
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As Table 3 shows models, obtained by simple averaging of lead tests for SCAs 
(Table 3) and by interpolation (Table 4) provide rather poor fits (R2 =0.079 -0.081, 
see Table 1 and R2 =0.066 - 0.077; Table 4). Notably, model fits are higher in VP 
models (R2=0.251-0.270; Table 5), indicating that the latter models appear to im-
prove the models’ explanatory power, at least compared to the former model runs 
(see Tables 3-4). 

Characteristically, in the VP-based models, the lead exposure variable emerged as 
statistically significant and exhibits the expected sign, that is, it is positively associ-
ated with the percent of asthmatic children (B=0.061, P<0.05; see Table 5), while 
in both SCA-averaged and interpolation-based models (Tables 3-4), the sign of this 
association is unreasonably negative, implying that lead exposure may have a protec-
tive effect on children. 

Table 4: Factors affecting the percentage of children with asthma calculated 
using interpolation based techniques - IDW and Kriging (geographic 
resolution - SCAs; method -OLS)

Variable
Model 3- Kriginga Model 4- IDWa

Ba Ba

(Constant) -12.474
(-0.695)

-11.082
(-0.618)

Lead exposure -0.021
(-1.111)

-0.012
(-1.027)

Obesity 0.045
(0.254)

0.045
(0.267)

Income status 0.082
(1.061)

0.110
(1.392)

Age 2.700
(1.527)

2.485
(1.405)

Number of obs. b 72 72

R2 0.077 0.066

F 1.222 1.190
 a Regression coefficient and t-statistics in the parentheses; b num-
ber of valid observations list-wise; c Moran’s I spatial lag coeffi-
cient. d spatial lag coefficient. *indicates a 0.1 significance level; 
**indicates a 0.05 significance level; *** indicates a 0.01 signifi-
cance level.
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Table 5: Factors affecting the percentage of children with asthma (geographic 
resolution – Voronoi polygons; methods: Ordinary Least Squares (OLS) 
and Spatial Lag (SL) regressions)

Variable
Model 1-OLSa Model 2-SLa

Ba Ba

(Constant) -49.756**

(-2.626) 

-49.694 ***

 (-2.783)

Lead exposure 0.061 **

(2.367)
0.063***

(2.543) 

Obesity 0.233
(0. 785)

0.220 
(0.790)

Income status -0.121
(-0.903)

-0.110 
(-0.873)

Age 5.783***

(3.135) 

 5.836***

(3.358) 

Number of obs. b 45 45

R2 0.268 0.270

F 3.655**

Log likelihood -147.93

Moran’s I c 0.461

Rhod -0.071

Note: a Regression coefficient and t-statistics in the parentheses; 
b number of valid observations list-wise; c Moran’s I spatial lag 
coefficient. d spatial lag coefficient. *indicates a 0.1 significance 
level; **indicates a 0.05 significance level; *** indicates a 0.01 
significance level.

DISCUSSION
Although the use of VP in environmental and geographic research is not new 

(Benenson et al., 2002; Benenson and Omer, 2003; Anselin et al., 2005), in previ-
ous studies this technique was used mainly for visualization purposes, data com-
parison, and nearest neighbor queries. However, in empirical studies, there is often 
a need to analyze the association between several geographically referenced objects 
while taking into account potential confounders which may affect it. Hence, in the 
present analysis, we attempted to illustrate the use of VPs for a multivariate analy-
sis, in which the association between soil pollution exposure estimates and asthma 
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morbidity was controlled for socio-economic status of the study population and its 
health attributes. To the best of our knowledge, the proposed empirical approach 
of using VPs for generating relatively homogeneous exposure areas for a multivari-
ate statistical analysis is novel, and helps to minimize potential biases arising from 
exposure misclassification. 

The potential usefulness of the proposed approach may be attributed to the fact 
that in empirical environmental research, there is often a need to combine and 
analyze data obtained for different resolution levels: group-level data derived from 
surveys, data obtained from individuals, mixed data from both surveys and indi-
viduals, and data for statistical areas whose boundaries are established for purposes 
other than health investigations (Aherns et al., 2004). 

While population level data obtained from e.g., census designated statistical ar-
eas, are most readily available, they have several disadvantages. Thus, for instance, 
these population level data normally provide the researcher with a limited number 
of variables which rarely go beyond basic demographic attributes and aggregated 
income counts. Census data do not also include exposure estimates, which normally 
come from soil tests, measurements provided by air quality monitoring stations 
(AQMS) or estimated by air dispersion modeling. Since census designated areas, on 
the one hand, and networks of soil samples and monitoring stations, on the other, 
do not overlap, the same pollution levels are effectively assigned to all residents of 
relatively large territorial divisions, within which actual exposure levels may vary 
considerably. This is likely to lead to an exposure misclassification bias and errone-
ous estimates of exposure-health effect associations.

The use of various interpolation techniques, such as splines, inverse distance 
weighted method (IDW), kernel smoothing, or kriging is one possibility to address 
this potential bias (Aherns et al., 2004; Kloog et al., 2009). However, these inter-
polation techniques have several drawbacks, such as a mismatch of results obtained 
by different interpolation tools and “error propagation” (Wakefield and Shaddick, 
2006). 

The analytical approach proposed and tested in the present study is relatively 
simple. In the first step of the analysis, VPs is created around soil sample points. 
Next, population data are superimposed upon the VPs and averages are computed 
for each VPs, thus enabling a subsequent multivariate analysis of potential associa-
tion between soil contamination and population health attributes. 

Unlike a commonly used analytical approach based on census designated areas 
for exposure assessment, VPs polygons, formed around a relatively dense net of soil 
sample points, are less likely to cause such an exposure misclassification bias thus 
leading to more accurate assessments of environmental health effects. The present 
analysis confirms this assumption. While the SCA and interpolation based mod-
els did not detect a correct association between lead contamination and children 
health, such an association was detected in the VP models. This outcome highlights 
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the advantages of using the Voronoi rezoning technique, as opposed to traditional 
SCA zoning tools.

It should be noted, however, that the use of the VPs technique requires a large 
amount of observation points (e.g. soil sample points or a dense net of AQMS), 
around which VPs can be formed. An alternative may be using air pollution grids 
generated by air dispersion modeling (Wang et al., 2006; Aeromod, 2010), which 
may serve as proxies for environmental pollutants dispersed with the air and accu-
mulated in soil around the study cohort’s residences. 

CONCLUSION

As the present study demonstrates, model fits were consistently higher in the 
Voronoi tessellation models than in the SCA and interpolation models, indicating 
that, in line with our initial research hypothesis, the VP method does appear to 
improve the multivariate models’ explanatory power. As we suggest, the proposed 
technique of VP rezoning may be applicable to a wide range of empirical studies 
which use SCA’s that do not fit the “real” exposure zones and may thus cause expo-
sure mis-classification biases and erroneous cause-effect estimates.
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