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Spatial autocorrelation of regression residuals is a violation of an assumption 
of the general linear model. Yet despite the widespread use of spatial data in 
applied work, many researchers fail to examine residuals for spatial autocor­
relation, or they rely on sUbjective interpretation of residual maps. In part, 
this problem stems from a lack of easy-to-use programs that can be incor­
porated into existing research procedures. In this note we present a short 
program for testing spatial association among regression residuals. Based on 
Moran's I statistic, the program employs SAS's PROC MATRIX language, and 
can easily augment regression analyses run using the SAS package. 

An important assumption in regression analysis is the lack of association among error 
terms. This assumption may be easily violated in data analyses which employ temporal 
or spatial series. -In the case of time series, the independence assumption is readily 
assessed by the Durbin-Watson test, which is routinely reported in most statistical 
packages. For the user of spatial data, however, the assumption of error term indepen­
dence is more problematic. Tests for spatially autocorrelated residuals have been devel­
oped by Cliff and Ord (1973; 1980), but the formulae are cumbersome and are not 
incorporated into standard packages. Equally disconcerting is the selection of weights. 
The two-dimensional and non-regular nature of spatial data leads to a variety of possible 
weight specifications, and autocorrelation tests may be sensitive to the particular con­
figuration chosen. 

These problems have no doubt inhibited many researchers from performing tests on 
residuals as a means of assessing conformance to the assumptions of regression. Where 
formal tests are not performed, there may be a reliance upon maps of residuals, but this 
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procedure is subjective and should not be used as a definitive guide concerning the level 
of autocorrelation among residuals. 

As a step in simplifying the assessment of spatial independence in residuals, this 
paper reports a program for performing spatial autocorrelation tests using the I statistic 
(Cliff and Ord, 1973; 1980). Written in SAS's PROC MATRIX language, it enables 
us to reduce to a few lines what would, in a FORTRAN program, be a large number of 
statements. The program can be merged with SAS regression programs, or it may be 
used independently, with residuals and other data supplied by the user. We also discuss 
alternative weight matrix configurations and their specification in SAS. 

THE I STATISTIC 

In the ordinary least squares regression model, 

Y ::: XB + e (1) 

the estimates of regression parameters are best linear unbiased (BLUE) if a number of 
assumptions are met (Draper and Smith, 1966; Poole and O'Farrell, 1971). Our concern 
is with the assumption of error term independence. Residuals are found by 

e = Y - XB (2) 

When these are pairwise (positively) correlated over space, the standard errors associated 
with the estimates are downward biased, and inflation of R2 will result. The problem is 
indicative of a nonlinear relationship, missing variables, or the need for an autoregres­
sive structure. 

Cliff and Ord (1980) developed a test for spatial independence ofregression residuals. 
The distribution for the test statistic, I, has been examined under the assumption of 
normality (N) and randomness (R). They conclude that assumption N is the preferred 
distribution, and this is the form of the test presented here. 

The test statistic, I, is given by (Cliff and Ord, 1980): 

_ ~(e'we) 
I - S e'e o 

(3) 

where W is a modifiable n-by-n weight matrix and So is the sum of all wij elements. 
The wij's specify the relationship between ith and jth observations, with main diagonal 
elements set to zero. 

The expected value of I, E(l), is 

n*tr(A) 
E(l) = - (n-k)S 0 

where tr denotes the trace of matrix A, and where 

A = (X'X)-lX'WX 

(4) 

(5) 
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The variance of I is found by 

Var(I) ::: S~(n-k~~n-k+2) {8 1 + 2tr(A)2 - tr(B) - 2[t~~~)]2} (6) 

where S 1 is one half of the sum of the squared elements of W + WI, and where 

B ::: 4(X I X)-lX I U2X (7) 

U = O.5(W + WI) (8) 

The z-variate for I, 

z::: I-E(I) 

-V Var(I) 
(9) 

may be tested for significance in the usual manner, commonly under the one tailed al­
ternative hypothesis that z> O. In the section below we translate equations (3) through 
(9) into the SAS PROC MATRIX language. 

SAS PROGRAM FOR SPATIAL AUTOCORRELATION TEST 

PROC MATRIX (SAS User's Guide. 1982b) is a programming language which 
allows operations to be performed on entire matrices, vectors, and scalars. The language 
follows matrix algebra notation, with special operators and functions enabling a reduc­
tion in programming lines. For example, matrix multiplication is performed by the 
operator, *, while matrix inversion employs a function, INV. 

Table 1 presents the SAS statements required to evaluate spatial autocorrelation 
using the I statistic under the assumption of normality. Three DATA steps input the 
required values of the independent variables, the residuals, and the weight matrix. 
DATA IV AR specifies the matrix of independent variables used in the regression. "k" 
in line 2 is the userspecified number of columns of X, where the first column, Xl, 
must be set to unity. The records containing these values follow the CARDS state­
ment; their placement in the program is denoted by the matrix insert. Using "list" 
input requires that each observation begins on a new record and that the ordered varia­
bles be separated by at least one blank space. Additional information on input modes 
can be found in SAS User's Guide (1982a). Lines 4 through 6 read a vector of regres­
sion residuals, E. Lines 7 through 9 specify the weight matrix, W. It can be read as 
shown provided the elements of the matrix are separated by blanks and that each row 
begins on a new record. "n" (line 8) is a user-specified number of observations. 
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Table 1: SAS PROC MATRIX program for testing regression residuals for spatial 

1 
2 
3 

4 
5 
6 

7 
8 
9 

DATA IVAR; 
INPUT XI-Xk; 
CARDS; 
1 x21 x31 
1 x22 x32 
1 
1 
1 

DATA RESID; 
INPUT E; 
CARDS; 
e l 
e2 

en 

DATA WEIGHTS; 
INPUT WI-Wn; 
CARDS; 
0 w 12 W I3 
W21 0 W23 

Wnl Wn2 Wn3 

10 PROC MATRIX; 
11 FETCH X DATA=IV AR; 
12 FETCH E DATA=RESID; 
13 FETCHW DATA=WEIGHTS; 
14 N=NROW(X); 
15 K=NCOL(X); 
16 SO=SUM(W); 
17 SI=0.5#SUM«W+W')##2); 
18 U=O.5*(W+W'); 
19 A=INV(X'*X)*X'*W*X; 
20 B=4#INV(X'*X)*X'*(U**2)*X; 
21 I:::(N#jSO)#«E'*W*E)#j(E'*E»; 
22 EI=-(N#TRACE(A»)#j«N-K)#SO); 

wIn 

W2n 

0 

23 V ARI=«N##2)#j«S0##2)#(N-K)#(N-K+2») # 
24 (Sl+2#TRACE(A**2)-TRACE(B)-2#(IRACE(A)##2)#j(N-K»; 
25 SDI= V ARI##O.5; 
26 Z=(I-EI)#jSDI; 
27 PRINT I EI V ARI SDI Z; 
Notes: 
1) k in line 2 is a user specified number of columns of X (number of independent varia­

bles plus one). 
2) X's first column is set to unity. 
3) n in line 8 is a user specified number of observations. 
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PROC MATRIX is invoked in line 10. Lines 11 to 13 assemble the data, while 
lines 14 and 15 compute the number of observations and columns of x (note that k is 
one more than the number of independent variables since the first column of X is set to 
unity). Lines 16 through 26 replicate, in PROC MATRIX notation, equations (3) 
through (9). I (line 21) is the calculated value of the test statistic; EI (line 22) is its 
expected value; V ARI (lines 23-24) is the variance of I; SDI (line 25) is the standard 
deviation of I; Z (line 26) is the computed z-variate. These are printed using the 
PRINT statement (line 27). Alternatively, all the information including the original 
data may be printed using the statement: PRINT; . 

WEIGHT MATRIX SPECIFICA nON IN SAS 

The most common configuration of the weight matrix is a contiguity relationship 
where wij "" 1 when observations share a boundary and wij "" O. otherwise. Tests per­
formed using this configuration of the matrix are equivalent to asking whether or not 
contiguous areal units tend to have similar residual values. The contiguity matrix 
involves no additional programming lines, as W is read directly by the statements in 
lines 7 through 9 of Table 1. Another measure of association is the percentage Qf an 
observation's boundary shared with a neighboring observation (Cliff and Ord, 1980). 
This has the advantage of retaining more information than a binary matrix, and can 
partially compensate for differences in the size of areal units. Alternatively, the wij's 
may be measures of interaction among the observations (Gatrell, 1979). In this case it 
may be justified to consider nonlinear effects. This can be implemented by associating 
a parameter to the weight, as in w~. Values ofb greater than unity. enhance weights for 

1J 
any given measure, while values less than unity de-emphasize the wi/so An analysis of 
the sensitivity of spatial autocorrelation tests to these modifications can be performed 
by running the program with different values of b. The PROC MATRIX statement 
required to implement this operation is 

15a W = W##b; This should be inserted in Table 1 after line 15. 

A common measure of (negative) association is the distance, dij' between observa­
tions or their centroids. This is a useful form of weighting when the observations are 
points (e.g .• weather stations, cities). Let the weight matrix contain the dij values; a 
positive measure of association results when the weights are raised to a negative power, 
as in d-.~. Higher values of b amount to testing for more local effects, while lower 

1J 
values provide for more spatially dispersed, or regional, tests. Sensitivity analyses may 
be performed by altering the b values. The PROC MATRIX statements required when 
weights are raised to a negative power are: 

15a W = W + I(N) ; 

I5b W = (W##-b) - I(N); 
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Line 15a adds the identity matrix to W, ensuring that all elements are nonzero. Line 
I5b raises the wij values to the user-specified value of b, and then subtracts the identity 
matrix to the result, thus returning the diagonal elements to zero. 

CONCLUSION 

Autocorrelation tests on regression residuals from spatial data analyses may never be 
as routine as the equivalent tests in time series analysis. The complications that arise 
when using irregularly-spaced two-dimensional data (with a variety of possible weight 
matrix configurations) will doubtless leave many statistical packages without such 
capabilities in the near future. Nevertheless, the possibility of violating an assumption 
of the general linear model should not be ignored by those who use spatial series in 
regression analyses. The consequences of spatial interdependence are deflated standard 
errors and inflated R2. Ultimately, spatial autocorrelation limits our ability to draw 
meaningful conclusions regarding the parameters of functional relations. 

The program reported here takes advantage of the matrix manipulations capabilities 
of SAS 1 • Requiring only a few statements, the program can be easily employed to test 
for residual autocorrelation. If detected, autocorrelation can be addressed by examining 
the data for nonlinear relationships, a missing variable, or by directly incorporating a 
spatially autoregressive structure. 

NOTES 

1. In the absence of SAS, one may adapt the program shown in Table 1 to virtually 
any matrix language. 
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